

A Primer

Bob Bannon February 2000

ASSET ALLOCATION CASE 1: BASIC OPTIMIZATION

$$\mathbf{MAX} \qquad \hat{\mathbf{R}}_{P} = \mathbf{W}_{S} \hat{\mathbf{R}}_{S} + \mathbf{W}_{B} \hat{\mathbf{R}}_{B} + \mathbf{W}_{C} \hat{\mathbf{R}}_{C}$$

$$\mathbf{W}_{S}, \mathbf{W}_{B}, \mathbf{W}_{C}$$

Subject to:

$$\hat{\sigma}_{P}^{2} \leq \overline{\sigma}_{P}^{2}$$

$$W_{S} + W_{B} + W_{C} \leq LEVR$$

$$W_{S}, W_{B}, W_{C} \geq 0$$

WHERE:

 \hat{R}_{P} = The Expected Gross Return on the Portfolio

 \hat{R}_s , \hat{R}_B , \hat{R}_C = The Expected Returns for the Stock, Bond, and Cash Asset Classes

 W_S, W_B, W_C = The portfolio weights for the Stock, Bond, and Cash Asset Classes

$$\hat{\sigma}_{P}^{2} = W_{S}^{2} Var(\hat{R}_{S}) + W_{B}^{2} Var(\hat{R}_{B}) + W_{C}^{2} Var(\hat{R}_{C}) + 2W_{S} W_{C} Cov(\hat{R}_{S}, \hat{R}_{C}) + 2W_{B} W_{C} Cov(\hat{R}_{S}, \hat{R}_{C}) + 2W_{B} W_{C} Cov(\hat{R}_{B}, \hat{R}_{C})$$

= The Expected Variance of the Portfolio

 $\overline{\sigma}_{P}^{2}$ = The Maximum Portfolio Variance to be Tolerated

LEVR = The leverage factor of the portfolio (100% = unleveraged, more = leverage)

CASE 2: BASIC OPTIMIZATION with Hard Constraints

$$\hat{R}_{P} = W_{S} \hat{R}_{S} + W_{B} \hat{R}_{B} + W_{C} \hat{R}_{C}$$

 W_S, W_B, W_C

Subject to:

$$\hat{\sigma}_{P}^{2} \leq \overline{\sigma}_{P}^{2}$$

$$W_{S} \leq STK^{+}, W_{S} \geq STK^{-}$$

$$W_{B} \leq BND^{+}, W_{B} \geq BND^{-}$$

$$W_{C} \leq CSH^{+}, W_{C} \geq CSH^{-}$$

$$W_{S}\beta_{S} + W_{B}\beta_{B} + W_{C}\beta_{C} \leq \beta^{*}$$

$$W_{S} + W_{B} + W_{C} \leq LEVR$$

$$W_{S}, W_{B}, W_{C} \geq 0$$

WHERE:

 \hat{R}_{n} = The Expected Gross Return on the Portfolio

 \hat{R}_{S} , \hat{R}_{B} , \hat{R}_{C} = The Expected Returns for the Stock, Bond, and Cash Asset Classes

 W_S , W_B , W_C = The portfolio weights for the Stock, Bond, and Cash Asset Classes

$$\hat{\sigma}_{P}^{2} = W_{S}^{2} Var(\hat{R}_{S}) + W_{B}^{2} Var(\hat{R}_{B}) + W_{C}^{2} Var(\hat{R}_{C}) + 2W_{S} W_{B} Cov(\hat{R}_{S}, \hat{R}_{B}) + 2W_{S} W_{C} Cov(\hat{R}_{S}, \hat{R}_{C}) + 2W_{B} W_{C} Cov(\hat{R}_{B}, \hat{R}_{C})$$

= The Expected Variance of the Portfolio

 $\overline{\sigma}_{P}^{2}$ = The Maximum Portfolio Variance to be Tolerated

 β_{ii} = A Factor associated with holding one unit of Stocks, Bonds, or Cash

 $STK^+, STK^- =$ Upper and lower Bounds for Stock Holdings

 BND^+ , BND^- = Upper and lower Bounds for Bond Holdings

 $CSH^+, CSH^- =$ Upper and lower Bounds for Cash Holdings

LEVR = The leverage Factor of the Portfolio (100% = no leverage, over 100% = leverage)

CASE 3: TURNOVER-SENSITIVE OPTIMIZATION

MAX
$$\hat{r}_{P} = w_{S} \hat{R}_{S} + w_{B} \hat{R}_{B} + w_{C} \hat{R}_{C}$$
$$-|w_{S} - w_{S}^{*}| \cdot \tau_{S} - |w_{B} - w_{B}^{*}| \cdot \tau_{B} - |w_{C} - w_{C}^{*}| \cdot \tau_{C}$$

 W_S, W_B, W_C

Subject to:

$$\hat{\sigma}_{P}^{2} \leq \overline{\sigma}_{P}^{2}$$

$$W_{S} + W_{B} + W_{C} \leq LEVR$$

$$\left| W_{S} - W_{S}^{*} \right| + \left| W_{B} - W_{B}^{*} \right| + \left| W_{C} - W_{C}^{*} \right| \leq Turnover^{*}$$

$$W_{S}, W_{B}, W_{C} \geq 0$$

WHERE:

 \hat{r}_P = The Expected Net Return on the Portfolio

 \hat{R}_{s} , \hat{R}_{R} , \hat{R}_{C} = The Expected Returns for the Stock, Bond, and Cash Asset Classes

 W_S, W_B, W_C = The portfolio weights for the Stock, Bond, and Cash Asset Classes

 τ_s , τ_B , τ_C = The Transaction Cost for Changing a Stock, Bond, or Cash Position

 w_S^*, w_B^*, w_C^* = The Starting Portfolio Weights for the Stock, Bond, and Cash Asset Classes

$$\hat{\sigma}_{P}^{2} = W_{S}^{2} Var(\hat{R}_{S}) + W_{B}^{2} Var(\hat{R}_{B}) + W_{C}^{2} Var(\hat{R}_{C}) + 2W_{S} W_{B} Cov(\hat{R}_{S}, \hat{R}_{B}) + 2W_{S} W_{C} Cov(\hat{R}_{S}, \hat{R}_{C}) + 2W_{B} W_{C} Cov(\hat{R}_{B}, \hat{R}_{C})$$

= The Expected Variance of the Portfolio

 $\overline{\sigma}_{P}^{2}$ = The Maximum Portfolio Variance to be Tolerated

LEVR = The leverage factor of the portfolio (100% = unleveraged, more = leverage)

Turnover* = The Maximum Portfolio Turnover to be Tolerated

CASE 4: BENCHMARK RELATIVE OPTIMIZATION

$$MAX \quad \hat{\alpha}_{P} = (w_{S} - \overline{w}_{S})\hat{R}_{S} + (w_{B} - \overline{w}_{B})\hat{R}_{B} + (w_{C} - \overline{w}_{C})\hat{R}_{C}$$

$$w_{S}, w_{B}, w_{C}$$

Subject to:

$$\hat{\sigma}_{TE}^{2} \leq \overline{\sigma}_{TE}^{2}$$

$$W_{S} + W_{B} + W_{C} \leq LEVR$$

$$\left| W_{S} - \overline{W}_{S} \right| \leq S_{tilt}^{*}, \quad \left| W_{B} - \overline{W}_{B} \right| \leq B_{tilt}^{*}, \quad \left| W_{C} - \overline{W}_{C} \right| \leq C_{tilt}^{*}$$

$$W_{S}, W_{B}, W_{C} \geq 0$$

WHERE:

$$\hat{\alpha}_{p} = \hat{R}_{p} - \hat{R}_{p} = \text{Expected Portfolio Value Added over the Benchmark}$$

 \overline{W}_S , \overline{W}_B , \overline{W}_C = The Benchmark Weights for the Stock, Bond, and Cash Asset Classes

$$S_{tilt}^{\star}$$
, B_{tilt}^{\star} , C_{tilt}^{\star} = The Maximum Tilts to be Tolerated in the Stock, Bond, and Cash Asset Classes

$$\hat{\sigma}_{TE}^{2} = (W_{S} - \overline{W}_{S})^{2} Var(\hat{R}_{S}) + (W_{B} - \overline{W}_{B})^{2} Var(\hat{R}_{B}) + (W_{C} - \overline{W}_{C})^{2} Var(\hat{R}_{C})$$

$$+ 2(W_{S} - \overline{W}_{S})(W_{B} - \overline{W}_{B})Cov(\hat{R}_{S}, \hat{R}_{B}) + 2(W_{S} - \overline{W}_{S})(W_{C} - \overline{W}_{C})Cov(\hat{R}_{S}, \hat{R}_{C})$$

$$+ 2(W_{B} - \overline{W}_{B})(W_{C} - \overline{W}_{C})Cov(\hat{R}_{B}, \hat{R}_{C})$$

= The Expected Tracking Error of the Portfolio to the Benchmark

 $\overline{\sigma}_{TE}^2$ = The Maximum Tracking Error of the Portfolio to the Benchmark to be Tolerated

CASE 5: BENCHMARK RELATIVE & TURNOVER SENSITIVE OPTIMIZATION

$$\begin{array}{ll}
\mathbf{MAX} & \hat{\boldsymbol{\alpha}}_{P} = (\boldsymbol{w}_{S} - \overline{\boldsymbol{w}}_{S}) \hat{\boldsymbol{R}}_{S} + (\boldsymbol{w}_{B} - \overline{\boldsymbol{w}}_{B}) \hat{\boldsymbol{R}}_{B} + (\boldsymbol{w}_{C} - \overline{\boldsymbol{w}}_{C}) \hat{\boldsymbol{R}}_{C} \\
\boldsymbol{w}_{S}, \boldsymbol{w}_{B}, \boldsymbol{w}_{C} & -|\boldsymbol{w}_{S}| \cdot \boldsymbol{\tau}_{S} - |\boldsymbol{w}_{B} - \boldsymbol{w}_{B}| \cdot \boldsymbol{\tau}_{B} - |\boldsymbol{w}_{C} - \boldsymbol{w}_{C}| \cdot \boldsymbol{\tau}_{C}
\end{array}$$

Subject to:

$$\hat{\sigma}_{TE}^{2} \leq \overline{\sigma}_{TE}^{2}$$

$$(w_{S} - \overline{w}_{S}) + (w_{B} - \overline{w}_{B}) + (w_{C} - \overline{w}_{C}) \leq 0$$

$$|w_{S} - w_{S}^{*}| + |w_{B} - w_{B}^{*}| + |w_{C} - w_{C}^{*}| \leq Turnover^{*}$$

$$|w_{S} - \overline{w}_{S}| \leq S_{tilt}^{*}, \quad |w_{B} - \overline{w}_{B}| \leq B_{tilt}^{*}, \quad |w_{C} - \overline{w}_{C}| \leq C_{tilt}^{*}$$

$$w_{S}, w_{B}, w_{C} \geq 0$$

WHERE:

$$\hat{\alpha}_p = \hat{R}_p - \hat{R}_p = \text{Expected Portfolio Value Added over the Benchmark}$$

 $\overline{W}_S, \overline{W}_B, \overline{W}_C$ = The Benchmark Weights for the Stock, Bond, and Cash Asset Classes

$$S_{tilt}^{\star}$$
, B_{tilt}^{\star} , C_{tilt}^{\star} = The Maximum Tilts to be Tolerated in the Stock, Bond, and Cash Asset Classes

$$\hat{\sigma}_{TE}^{2} = (W_{S} - \overline{W}_{S})^{2} Var(\hat{R}_{S}) + (W_{B} - \overline{W}_{B})^{2} Var(\hat{R}_{B}) + (W_{C} - \overline{W}_{C})^{2} Var(\hat{R}_{C})$$

$$+ 2(W_{S} - \overline{W}_{S})(W_{B} - \overline{W}_{B})Cov(\hat{R}_{S}, \hat{R}_{B}) + 2(W_{S} - \overline{W}_{S})(W_{C} - \overline{W}_{C})Cov(\hat{R}_{S}, \hat{R}_{C})$$

$$+ 2(W_{B} - \overline{W}_{B})(W_{C} - \overline{W}_{C})Cov(\hat{R}_{B}, \hat{R}_{C})$$

= The Expected Tracking Error of the Portfolio to the Benchmark

 $\overline{\sigma}_{TE}^2$ = The Maximum Tracking Error of the Portfolio to the Benchmark to be Tolerated

CASE 1: BASIC OPTIMIZATION

NUMERICAL EXAMPLE

PROBLEM: Find the optimal allocation to stocks, bonds, and cash given the following expected returns and monthly return covariance matrix. The expected annualized volatility of the portfolio should not exceed 10%. No leverage is permitted.

Asset Forecasts		
Asset	Expected	
Class	Returns	
Stocks 1.6995		
Bonds	0.3939	
Cash	0.4026	

(calcul	RETURN COVARIANCE MATRIX (calculated based on monthly returns from Jan 95 to Dec 99)			
	Stocks Bonds Cash			
Stocks	15.598	1.121	-0.004	
Bonds	1.121	1.451	0.011	
Cash	-0.004	0.011	0.001	

ANSWER: A 10% annual volatility is a 100% annual variance. A 100% annual variance is a 100%/12 = 8.33333% monthly variance. The objective function is:

MAX
$$R_P = 1.6995W_S + 0.3939W_B + 0.4026W_C$$

subject to a monthly variance not to exceed 8.3333% and W_S , W_B , and W_C all nonnegative. The optimal solution is:

 $W_S = 72.3\%$	$W_{B} = 0.0\%$	$W_C = 27.7\%$	
115 /2.5/0	11 B 010 / 0	**(2/1//0	

With a monthly return of 1.3399% and a monthly variance of 8.3333%.

CASE 2: BASIC OPTIMIZATION With Hard Constraints

NUMERICAL EXAMPLE

PROBLEM: Find the optimal allocation to stocks, bonds, and cash given the following expected returns and monthly return covariance matrix. The expected annualized volatility of the portfolio should not exceed 10%. Stocks cannot exceed 65% of the portfolio. The portfolio needs to generate an annual income yield of 3%. No leverage.

Asset Forecasts			
Asset Expected Income			
Class	Returns Yield		
Stocks 1.6995 0.1652			
Bonds	Bonds 0.3939 0.4868		
Cash 0.4026 0.0000			

(calcul	RETURN COVARIANCE MATRIX (calculated based on monthly returns from Jan 95 to Dec 99)			
Stocks Bonds Cash				
Stocks	15.598	1.121	-0.004	
Bonds	1.121	1.451	0.011	
Cash	-0.004	0.011	0.001	

ANSWER: A 3% annualized income yield is a 0.2466% monthly income yield. The optimization formulation is:

MAX
$$R_P = 1.6995W_S + 0.3939W_B + 0.4026W_C$$

subject to

$$\label{eq:Variance} Variance < 8.3333\% \\ W_S < 65\% \\ 0.1652W_S + 0.4868W_B + 0.0000W_C > 0.2466\% \\ W_S, W_B, W_C > 0$$

The optimal solution is:

$W_C = 6.4\%$	$W_p = 28.6\%$	$W_{c} = 65.0\%$
$W_C = 6.4\%$	$W_{B} = 28.6\%$	$W_{S} = 65.0\%$

With a monthly return of 1.243%, a monthly variance of 8.3333% and a monthly income yield of 0.2466%.

CASE 3: TURNOVER SENSITIVE OPTIMIZATION

NUMERICAL EXAMPLE

PROBLEM: Find the optimal allocation to stocks, bonds, and cash given the following expected returns and monthly return covariance matrix. The expected annualized volatility of the portfolio should not exceed 10%. Your current allocation is 60% stocks, 25% bonds, 15% cash. Annualized turnover less than 200%. No leverage is permitted.

Asset Return and Cost Forecasts			
Asset	Expected Turnover		
Class	Returns Costs		
Stocks	1.6995	0.2000	
Bonds	0.3939	0.1000	
Cash	0.4026	0.5000	

(calcula	RETURN COVARIANCE MATRIX (calculated based on monthly returns from Jan 95 to Dec 99)			
	Stocks Bonds Cash			
Stocks	15.598	1.121	-0.004	
Bonds	1.121	1.451	0.011	
Cash	-0.004	0.011	0.001	

ANSWER: The optimization formulation is:

MAX
$$R_P = 1.6995W_S + 0.3939W_B + 0.4026W_C - 0.20x|W_S - 0.65| - 0.10x|W_B - 0.25| - 0.05x|W_C - 0.15|$$

subject to:

$$\begin{aligned} & Variance < 8.3333\% \\ |W_S-0.65| - 0.10x|W_B-0.25| - 0.05x|W_C-0.15| < (200\%/12) \\ & W_S + W_B + W_C < 100\% \end{aligned}$$

$$W_S, W_B, W_C > 0$$

The optimal solution is:

$W_{S} = 68.3$	$W_B = 25.0\%$	$\mathbf{W_C} = 6.7\%$

With a monthly gr6ss return of 1.287%, a monthly net return of 1.266%, an annualized volatility of 9.75%, and a monthly turnover of 17% (200% annualized).

CASE 4: BENCHMARK RELATIVE OPTIMIZATION

NUMERICAL EXAMPLE

PROBLEM: Find the optimal allocation to stocks, bonds, and cash given the following expected returns and monthly return covariance matrix. Your benchmark is 60% stocks, 40% bonds. The expected annualized tracking error should not exceed 2%. No leverage should be used. Stocks can deviate up to 10% from benchmark, while bonds and cash can deviate up to 25% from benchmark.

Asset Forecasts			
Asset Expected			
Class	Returns		
Stocks 1.6995			
Bonds 0.3939			
Cash 0.4026			

(calcul	RETURN COVARIANCE MATRIX (calculated based on monthly returns from Jan 95 to Dec 99)			
	Stocks Bonds Cash			
Stocks	15.598	1.121	-0.004	
Bonds	1.121	1.451	0.011	
Cash	-0.004	0.011	0.001	

ANSWER: A 2% annual tracking error is a 4% annual tracking variance. A 4% annual tracking variance is a 4%/12 = 0.3333% monthly tracking variance. The objective fn is:

MAX
$$\alpha_P = 1.6995(W_S - 0.60) + 0.3939(W_B - 0.40) + 0.4026(W_C - 0.00)$$

Subject to:

The optimal solution is:

$$W_S = 70.0\%$$
 $W_B = 15.0\%$ $W_C = 15.0\%$

With a monthly portfolio expected return of 1.309% (0.132% over the expected benchmark return of 1.177%), an annualized tracking error of 1.52%, and a total expected portfolio volatility of 2.81% per month (9.74% per annum).